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NOTATION

A,B,D Extensional, coupling, and bending stiffness matrices, respectively,
for laminated plates

A*,B*,D* Extensional, coupling, and bending stiffness matrices, respectively,
for equivalent nonlaminated plates

A.j,Bij,Dij Elements of matrices A, B, and D defined above (i and j take on
integer values of 1, 2, and 6)

A. ,Dij Elements of inverted A and D matrices, respectively

a Long side dimension of laminated plate

b Short side dimension of laminated plate (also the width of
laminated beam or column of rectangular cross section)

b Width of laminated flange element of hybrid beam (b is also used

for the width of an equivalent nonlaminated flange having an
equivalent Young's modulus Ef)

b 2  Width of a nonlaminated flange having an equivalent Young's
modulus identical to the web modulus E of the hybrid beamw

E19E 2  Young's moduli of individual lamina or layer in the "l" and "2"directions (along and normal to fibers, respectively)

Ex,E Young's moduli of laminate in x and y directions, respectively

Eb  Effective Young's modulus of laminate under bending, or linearly
varying strain, condition

Ef Equivalent Young's modulus for laminated flange element of
hybrid beam

E Young's modulus for isotropic and homogeneous web element of
hybrid beam

GI12 Shear modulus of lamina with respect to the "1" and "2" directions

G ij NASTRAN notation for the reduced stiffnesses Qij (defined below--

not to be confused with the shear moduli, such as G12 above, as
explained in the report) 1

G Shear modulus of laminate with respect to xy plane (the plane
of the laminate)

h Depth of laminated and equivalent nonlaminated beam or plate

vi



kx~ky kxy Out-of-plane curvatures of the middle surface of the laminate

Mx,My Laminate moments, per unit width, associated with bending in the
x and y directions, respectively

Mxy Laminate twisting moment per unit width

m,n Integers, as defined in the report

NxNy Laminate in-plane axial or normal forces, per unit width, in the
x and y directions, respectively

Nxy Laminate in-plane shear force per unit width in xy plane

PO Lateral pressure loading (force per unit area) on laminated plate

Qij Reduced stiffness for individual lamina with respect to materialdirections (parallel and normal to fibers)

Qij Reduced stiffness Qij for lamina after transformation to overall

laminate x, y directions

Qtj Overall laminate reduced stiffness

Q 0 *j(b) Laminate reduced stiffnesses associated with membrane and bending
ii(in) ij~) behavior, respectively

w Deflection of laminated plate

x,y,z Right-handed laminate coordinate axes where x and v lie in tlie
plane of the laminate and the z axis is normal to the plane

xv,,Y Shearing strains in xv, zx, and zv planes, respectively

,._V, : Normal strains in x, y, and z directions, respectivelv, ofX •z laminate

X ×,xy'yXy Coefficients of mutual influence of the first kind

r X T Coefficients of mutual influence of the second kind

Angle of transformation between "1" axis (along the fibers) for
individual lamina and the laminate x axis)

vii
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Half wavelength of laminate buckle

' Poisson's ratios
yx

P Mass density of laminate

acr Buckling stress for laminated plate (specially orthotropic or
cross-ply type)

a xOy z  Normal stresses in x, y, and z directions, respectively, of
laminate

Sxy, zx,T Shear stresses in xy, zx, and zy planes of laminate

Natural frequency of vibration of laminated plate

ABBREVIATIONS AND DEFINITIONS

CQDMEM Quadrilateral membrane element in NASTRAN

CQUAD1 Quadrilateral membrane and bending element in NASTRAN

G/E (or GR/EP) Graphite/Epoxy

kip Thousands of

MAT2 NASTRAN material property card

NASTRAN A computer program used to perform finite-element analysis

PQUADI NASTRAN property card

VPI Virginia Polytechnic Institute

2D Two dimensional

3D Three dimensional

viii



ABSTRACT

Recent applications of laminated composites to ship structural
components have highlighted both the analytical complexities in-
volved and the need for providing the structural designer and
analyst with appropriate laminate analysis methods. To this end,
three types of analytical methods, traditionally applied to
metallic ship structural components, have been extended to the
analysis of laminated composites; procedures for their implemen-
tation are discussed. These methods include (a) strength-of-
materials techniques for laminated beam and column members, (b)
classical analysis methods for the bending, buckling, and vibration
of laminated plating, and (c) finite-element techniques for either
individual laminated components or more complex hybrid structures.
Finite-element approaches are discussed for investigating both the
in-plane stresses in the individual layers of a laminate and the
interlaminar shear and normal stresses which frequently govern
near discontinuities in laminate cross sections. The use of these
three analysis techniques necessitates that laminated composite
components be analyzed as nonlaminated components having equivalent
stiffness during in-plane axial and shear and out-of-plane bending
responses. Three kinds of equivalent elastic properties for
laminates are defined, and methods are presented for calculating
each of them. Since these computational procedures may be quite
lengthy for laminates with more than a few layers, a computer
program is referenced which automates the procedures. Lastly,
the effectiveness of different methods for laminate stiffness and
stress analysis was investigated by comparing analytical and test
results for a composite box beam having graphite epoxy flanges.
Good agreement between analytical and test results provides
encouragement for the further application of these methods.

ADMINISTRATIVE INFORMATION

The research work published in this report was sponsored during fiscal years

1977-1980 by the Naval Sea Systems Command (Codes 05R and 32R) and performed at

DTNSRDC primarily under Work Unit 1730-610.

INTRODUCTION

Composite materials have been employed in aerospace structures for many years

and are now receiving increased consideration for application to ship structural
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Figure 2 - Composite Foil Flap Component

In classifying composite materials, three commonly accepted types are recog-

nized: laminated composites, fibrous composites, and particulate composit'z. T;.

report is concerned with the first type, the laminated composites, whichi are 11rml

fabricated by stacking and orienting layers of fiber-imbedded cloth or tape ill pr~-

FIferred directions to achieve desired strength and stiffness properties. An xil.

of a four-layer laminate is shown in Figure 3.

As illustrated in Figure 4, existing and potential applications of lamnioated

composites in ship structural components include: (a) laminated beams and columils,

(b) laminated plating used as the flanges of beams or columns, (c) laminated plates,

and laminated plating for (d) panels and grillages, and (e) the skins of boX-tvj)

structures.

:-,

F.. ..41 '
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Figure 3 -Arrangement of Typical Four-Layer Laminate Composite
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(A) LAMINATED BEAM/COLUMN

(B) LAMINATED PLATE AS FLANGE OF BEAM
AND/OR COLUMN

(C) LAMINATED PLATES

(D) HYBRID 2D PANELS
AND GRILLAGES

'1

(E) HYBRID 3D STRUCTURES

Figure 4 - Structural Applications for Laminated Composites



Numerous methods, carried over from the analysis of metallic structures, are

available for analyzing laminated composites in the above applications. These

methods include: strength-of-materials techniques and formulas; classical methods

for the bending, buckling, and vibration of laminated plates; and the finite-element

method for the analysis of more complex hybrid structures (see Table 1). The exten-

sion of these analysis methods from structures made of isotropic and homogeneous

materials, for example, metallic, to ones involving laminated composites necessitates

that the laminated composite materials be replaced by "equivalent" homogeneous aniso-

tropic materials having the same stiffness properties during extensional and bending

deformations (see Figure 5). The required analyses are then performed on the new

structure where the laminated structural components are assumed to be made of this

"equivalent" material.

f.k--- b -- -.j I.4 ----- b .. T
h

LAMINATED AND EQUIVALENT (NONLAMINATED) BEAM OR COLUMN
COLUMN

(a)

LLAMINATED #EQUIVALENT EOUIV.
FLANGE FLANGE FLANGE

(MODULUS E1) IMOD. EW)

-B-*-WE -.*-WEB h
(MODULUS EW) (MODULUS Ew) (MOD. )

NOTE: ABOVE PROPORTIONS FOR Ef 'E w

BEAM WITH LAMINATED FLANGES AND EQUIVALENT
MODELS

(b)

Figure 5 - Illustration of Modeling Procedures for Laminated Beams and Columns
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The first part of this report will present procedures 3'4 for solving for the
5,6

equivalent stiffness properties based on the principles of laminated plate theory.

The elastic properties needed in the structural analysis of laminates are of three

kinds (Table 1): (a) engineering constants for conventional strength-of-materials-

type calculations, (b) extensional and bending stiffnesses for classical bending,

buckling, and vibrational analyses of laminated plates, and (c) reduced stiffnesses

for finite-element analyses of structural components involving laminates. The

necessity for three different representations of laminate stiffness, and the distinc-

tion between them, will be brought out later in the report.

The task of characterizing elastic properties of laminated composites may be

performed analytically, experimentally, or both. The use of laboratory component

tests to establish the elastic properties of a laminate for many different lamina

layups and fiber orientations is costly, so motivation exists for having an experi-

mentally valid analytical tool with the same capability. One of several available

computer programs having this analytical capability is discussed later in the report.

This and the other programs require as input data the unidirectional engineering

constants (parallel and perpendicular to the fibers) of the individual layers or

laminas which make up a laminate. Although these unidirectional engineering con-

stants may be determined analytically, it is common practice to experimentally

measure the constants using coupon tests.

TABLE I - EQUIVALENT STIFFNESS PROPERTIES AND METHODS

OF ANALYSIS FOR LAMINATED COMPOSITES

Methods of Analysis Types of StiffnessProperties

Strength of Materials Engineering Constants--
(Formulas, etc.) Ex , Ey , G ,x y v~ yx' xy

Classical Plate Solution Extensional and Bending
Stiffnesses--A ij, Bij, Dij

Finite Element Reduced Stiffnesses Q*j

Q j -Membrane Response

O -Bending Response
"7j (h)



Following a discussion of the procedures for determining the elastic properties

1 7of laminates, the use of these properties in implementing the analytical methods re-

ferred to earlier will be discussed. In order to assess the effectiveness of the

strength-of-material and finite-element methods for laminate applications, numerical

and test results are reported and compared for a composite box beam simulating the

forward foil of the PCH-l hydrofoil.

EQUIVALENT ELASTIC PROPERTIES OF LAMINATES

This section describes the computational procedures for determining the equiv-

alent elastic properties of laminates which are needed in analyzing structures em-

ploying laminated composites. It will be seen that these various kinds of elastic

properties are interrelated and are natural to the particular type of analysis being

performed. Engineering constants are common to design and analysis methods based on

strength-of-materials techniques; extensional and bending stiffnesses are natural to

classical methods of analyses, including finite-difference techniques; reduced stiff-

nesses are used for finite-element analyses. Because the engineering constants and

zeduced stiffnesses may be derived from the extensional and bending stiffnesses, the

latter are now discussed.

EXTENSIONAL AND BENDING STIFFNESSES

Mathematical expressions for the extensional and bending stiffnesses of a

laminate may be derived using the theory of laminated plates, or lamination theory

as it is called. 5'6 This theory is emp] red to not only generate equivalent stiff-

ness parameters for laminates, but also to form the basis for laminate stress anal-

yses. Lamination theory is based on the following assumptions: (a) a perfect bond

exists between the layers of a laminate (no slippage between layers); (b) the lami-

nated plate is thin, i.e., thickness is small compared to the lateral dimensions of

the plate; and (c) normals to the layers of a laminate remain perpendicular to the

layers (shearing strains y = Yyz = 0) and do not change length (cz=0) during

laminate bending. The coordinate system for defining cz' Yxz' and yyz has the

z axis perpendicular to the laminate and the x and y axes lying in the plane of the

laminate (see Figure 6). It should be noted that assumptions (b) and (c) above

correspond to the Kirchoff theory for plates and the Kirchoff-Love theories for

shells.

8



N

y

x

NN
I Nyx

NX . Nx Nx All A12  A16 1 x

N A 12 A22  A 26Nxy

NxY A16 A2 6  A 66  y

v N
Y

(F) M e t and 
D 22 D 261

16 26 66 J xv

v

Figure 6 -Relationship h,-Lween (a) in-Plane Forces and Strains and.
(b) Moments and Cirva Lures in Flat Symmetric Laminates

The extensional stifffncssL,; A.. of a laminate relate the in-plane for eS
N', N , and N per unit ,idth to thie in-plano strains , , and : -t

y xy xv
middle surface (see Fi'iure 6a). Similarly, the bending stiffnesses D.. relte'
out-of-plane bendini monrent >1 and )! rind twist ing moments M per unit widt C tlj

X V XNV
the resulting out-of-pl one curv;atures Vx, k , and k of the middle surface (c..

X, y xy
Figure 6b). In laminatus where the layup of layers or laminas about the middlt

surface is not symmetric, either because of fiber orientation and/or material pr,,i-

erties, a couplin4 betweet extension (including shear) and bending (includingc,

ing) occurs. In other words, the application of in-plane forces not only prodick-

91



in-plane strains but also causes out-of-plane bending and associated curvatures.

Likewise, any bending moments applied to the laminate will produce in-plane strains.

The stiffness parameters which relate in-plane forces to out-of-plane curvatures and

which relate moments to in-plane strains are referred to as coupling stiffnesses Bij.

Mathematically, these relationships are expressed in matrix form by

N Al1 A2 A6 Bl1 B2 B 16

N A
y A12 A22 A26 B12 B22 B26 y

Nxy A16 A26 A66 B16 B26 B66 Yxy
-- (1)

M B B B D D Dk

MxB 11 B12 B16 D11 D12 D16 kxM Bl B1 B1 Dl D1 D16

My B12 B22 B26 D12 D22 D26 ky

Mxy B16 B26 B66 D16 D26 D66 kxy

or, in condensed form, by

V[-ii = fH- (2)_M B I D k

The extensional, coupling, and bending stiffnesses respectively, Aij, Bij, and

D.. in Equation (2) are expressed and determined as follows:
1]

A fh/2 Q d Q (

Aij = f Qi dz ijk (Zk-Zk-)

-h/2 k=l

h/2 N

Bij = Qi zdz = j (k-Zkk Ik k3)

-h/2 k=l

f h/2 N

i j .1 -3 . ( ijk 3z 3~Dij Qij z d z  
Z ( ZQj k -kZ k-1)

-h/2 k=l

10



-. 5

where the Q parameters are referred to as reduced stiffnesses and constitute the

elements of the two-dimensional orthotropic stress-strain relations for the individ-

ual layers of a laminate. These stress-strain relations are given by

0 11 Q12 Q36 C

0yQ 12  Q22  Q26 Cy(4)

Sxyl L Q16 Q26 Q66J, Yxy

which are defined with respect to the direction of the on

appearance of the stiffness elements QI6, Q26 ' and instead of QI3, Q23 ' and

Q33' follows from the fact that Equations (4) are obtained by reducing the 6 > 6

stress-strain matrix for 3-dimensional behavior (see Reference 5). Appendices A

and B and Reference 5 discuss the detailed procedure for determining the extensional

and bfnding stiffnesses Aij and D ij (Bij elements are zero because the laminate con-

sidered is symmetric). The basic steps involved are summarized as follows:

1. Determine the reduced stiffness Qij for each of the laminas (see Appendix A,

Section A.1) using available unidirectional elastic moduli El, E2, "12' >21' an C12

for each of the laminas.

2. Transform these Qij, defined with respect to the so-called material direc-

tions (parallel and normal to the fibers), to the directions of the laminate axes*

x and y, resulting in Qij (see Appendix A, Section A.2).

3. Substitute the Qi. into Equations (3) and solve for the A.. and D.. (see

Appendix 
B).

The steps just outlined can be straightforwardly, but tediously, used to

compute the required stiffnesses A.., B. and D.. for any given laminate. "'It.

Caiciulation procedure is demonstrated in Appendix C for a graphite-epoxy ]iaminate.

osin (symmetric with B.. = 0) of the composite box beam in Figure 1.

At this point, it is worthwhile discussing the effect of such laminate char-

acteristics as symmetry, fiber orientation, etc., on the magnitudes of the stiflnt-s-

coefficients A.., Bi., and D.. in Equation (2). Laminates for which the A, B, :iii ,

The x and v directions for a laminate are usually chosen as follows for i

laminat -d beam and column. x along the member and v normal to the member in (it,

plane omf Cie laminate; for a laminated plate: x and v are parallel to tihe long I

short sides of plate, respectively; for laminates which are components of .2D

hybrid structures: any conveniently oriented x and v axes (z too) may be used.

I'



matrices in Equation (2) are completely full (i.e., no zero elements) represent the

most general case encountered (nonsymmetric laminates with multiple anisotropic

layers). In practice, a structural designer frequently tries to avoid this general

laminate case in order to (a) minimize analytical complexity, (b) eliminate modes

of deformation which could adversely affect the load capacity of the laminated

member (e.g., out-of-plane bending and/or twisting deformations associated with the

coupling stiffnesses Bij will reduce the load capacity of a laminated plate under

in-plane loads), and (c) prevent twisting of laminates when subject to temperature

changes and in-plane boundary restraint. Instead, the designer often tries to

select or buildup a laminate having symmetry about the midplane so that the coupling

roefficients Bij in Equation (2) are all equal to zero. Figure 7 shows how this is

achieved for cross-ply and angle-ply laminates. Note that symmetry requires that

the laminate layers, which are shown reflected (as in a mirror) about the middle

plane, must have the same thickness, elastic properties, and angles of orientation

relative to the x and y axes.

Beyond the simplification in Equations (2) due to symmetry (B.. = 0), simpli-

fications in the A and D matrices also occur if additional conditions are imposed

on the arrangement of layers within the laminate. Figure 7 indicates two classes of

symmetric laminates which may be somewhat easily discussed: the symmetric cross-ply

and the symmetric angle-ply laminate.

For the case of symmetric cross-ply laminates, whether thay are regular (e.g.,

90', 00, 90') or irregular* (e.g., 90', 00, 0', 900) in layup, the coupling coeffi-
cients A16' A2 6, D169 and D26 are all equal to zero. Coupling coefficients A16 and

A26 relate extensional forces N and N to shear strain y (and shear force NXy to26x y yy

extensional strains t and s ). Similarly, coupling coefficients D1 6 and D26 relate
x y

bending moments M and M to twisting curvature k xy, and twisting moment Mx to
x y y

bending curvatures k and k . The zeroing out of A16' A26' D 16, and D26 for sym-
x y 2 rsm

metric cross-ply laminates follows directly from the fact that the reduced stiff-

nesses Q16 and Q26 are zero for all of the layers of the cross-ply laminate.

Turning next to the symmetric angle-ply laminates in Figure 7, the picture is

more complicated. For the regular angle-ply laminates (e.g., +Ot, -c, +), the A16,

A26' D169 and D26 take on small (nonzero) values. However, for the irregular*

*Irregular here denotes laminates where the orientations of successive layers

do not simply alternate signs or directions as in regular laminates.
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EXAMPLE-REGULAR (90', 0 90 COUPLING COEFFICIENTS

0' Bii 0 (DUE TO SYMMETRY)

D16 D26 = 0

90

FOR REGULAR OR IRREGULAR

90 CASES (ANY NUMBER OF LAYERS)

Y

EXAMPLE-REGULAR (+h, (k, hi) OTHER EXAMPLES

(R) 'u c , 4,
(1)' 4(, -(, (4j, , Ct

R) c c, t, u4, -

a- x (I) 0 , (k, ., , 0 , +-(k+( (R) 4 o, u, u++, (A, 4 o, k, io,

+o COUPLING COEFFICIENTS

B = 0 (DUE TO SYMMETRY)

REGULAR LAYUPS
A16' A26' D 1 6 ' D26.--TAKE ON SMALL

VALUES-.(R) ABOVE
IRREGULAR LAYUPS

A16' A26' D 1 6 ' D2 6 -c--oTAKE ON SMALL
VALUES-0-(I) ABOVE

A16, A2 6, D16, D26=0 (I)' ABOVE

Figure 7 - Coupling Coefficients for (a' Symmetric Cross-Ply (Specially

Orthotropic) and (b) Symmetric Angle-Ply Laminates

symmetric angle-ply laminates, the coupling coefficients may either be zero or non-

zero in value depending upon the laminate layup arrangement (orientations, of the

successive layers) as pointed out in Figure 7. Lastly, it should be noted that a

symmetric laminate put together from a combination of cross-plys and angle-plvs may

also be shown to lead to zero on nonzero values for the coupling coefficients dcpnd-

[ng on the arrangement of layers within the laminate.
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Recall for the regular symmetric angle-ply laminates, that the coupling coeffi-

cients A1 6 , A26' D1 6, and D26 took on small nonzero values. In these instances the

analyst should be cautioned to not set the off-diagonal terms equal to zero simply

because they happen to be small. An indication of the effect of setting the off-

diagonal terms D1 6 and D26 equal to zero, i.e., treating the angle-ply laminated
5

plate as specially orthotropic, is provided by two examples from Jones. The first

example is a uniformly loaded square plate for which D 22/D = 1, (DI2 + 2D66)/D 1

1.5, and D I6/D 1 D26/D II = -0.5. For this problem, setting the twist coupling

coefficients D16 and D26 equal to zero results in calculated plate deflections which

are 24 percent less than the analytical predictions where these coefficients have not

been set equal to zero. The second example in Jones5 has to do with the buckling of

a rectangular laminated plate made up of twenty boron-epoxy layers having alternating

+and -angles of orientation with respect to the overall plate axes. It is pointed

out for this example in Jones that the specially orthotropic approximation leads to

an overestimate of the plate buckling load. Additional angle-ply laminates need to

be looked at before it can be determined just how small the DI6 and D26 have to be

before they can be safely set equal to zero in laminate deflection and buckling

analyses.

ENGINEERING CONSTANTS

At the preliminary design stage, many aspects of structural behavior for lami-

nated composite members (Figure 1) may be initially evaluated using strength-of-

materials techniques once the necessary engineering constants for the laminates are

available. These engineering constants may be calculated from the extensional

stiffnesses Aij after their values have been determined using the procedure described

previously and found in Appendices A and B. Methods will be discussed below for

calculating the following engineering constants for laminated composites:

E and E - Young's modulix y

V and v - Poisson's ratios
xy yx
Gxy - Shear modulus

and rl - Coefficients of mutual influence of the first kindnx,xy y,xy

Sxy,x and qxy,y - Coefficients of mutual influence of the second kind

14
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The first three types of engineering constants above, i.e., Young's modulus,

Poisson's ratio, and shear modulus, are already familiar to those individuals in-

volved with the design and analysis of metallic structures. The "coefficients of

mutual influence," however, are most probably not familiar. Therefore, stated

simply, the coefficients of mutual influence of the first kind relate a normal strain

in the x direction to a shearing strain in the xy plane (n ) or relate a normalx ,xy
strain in the y direction to a shearing strain in the xy plane (r, ). Similarly,~y,xy
the coefficients of mutual influence of the second kind relate a shearing strain in

the xy plane to a normal strain in the x direction (ny ) or to a normal strain in

the y direction (yy). As an example, n is expressed by
xyly xy,x

xy,x yxy x

where ' is the shearing strain in the xy plane associated with a normal strainxy

in the x direction v: (usually produced by a normal stress ( ).
x X

Methods of Calculation

Several computational procedures may be used to establish the engineering con-

stants for laminated composite materials. One procedure, not discussed here, is
3

contained in a paper by Greszczuk. A second procedure, given in a paper by Smith,

is probably more suitable for computer implementation than the first and is

described below.

Under in-plane load conditions, the in-plane forces on the laminated compon-

ents in structural applications (a) through (e) of Figure 4 are related to the

in-plane strains by

x A1 1  x A 2 y 16 Yxy

y 12 x A22 y A26 Yxv (5)

N xy AI6 x A26 c y + A66 Yy

or, in matrix form, by

15
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(NJ = [A] {0c

Solving for {EI in terms of {NJ we have {CI = [A] -  Ni = [A] {Ni, or written out,

t A N +A N +A N

x 11 x A12 y A16 xy

£ A N + A N + A N (6)y 12 x 22 y 26 xy
y =A1 N +A N +A N

xy 16 x A26 y A66 xy

where the A.. are the elements of the matrix [A] which is the inverse of [A]. The
1i

A.. are found from
1]

A = (A2 2 A 6 6 - 26)/A

A1 2 = -(A 1 2 A 6 6 - A1 6 A2 6)/A

A22 (A 1 1  A1 6 )/A

(7)
A1 6  (A1 2 A 2 6 - A1 6 A 2 2 )/A

A2 6 = -(A 11 A 2 6 - A1 6 A12/A

-- 2
A 6 6 = (A11 A 2 2 - 12)/A

where

A Al(A A66 - A2 ) -A (A A -A A
1122 66 26 12 12 66 A16 A26)

+ A1 6 (A 1 2 A 2 6 - A1 6 A 2 2 )

Once the Aij above are known, these quantities may be used to compute the engineering

constants. Expressions relating the engineering constants and the A.. are obtained1J

using Equation (6). The procedure for deriving expressions for E and nr is now

shown. (Similar procedures may be used to derive expressions for the other engineer-

ing constants.)

16



Deriving Ex.x

Setting N = N = 0 in the first of Equations (6), we have
y xy

£ x - A N x

But,

Ex- a/ = (N /h)/E

Therefore, equating both expressions for c above and then solving for Ex x

Ex = l/(A 1 lh) (8)

where h is the full thickness of the laminate.

Deriving nxy, x"

Setting N = N = 0 in the third of Equations (6),y xy

¥xy = A16 Nx

Substituting N = a h = E £ h into the above equation,

Yxy = A16 Ex cx
h

Now, as defined earlier,

xyx = xy x

so,

16 x x _xy,x C x A A6 E x  h

Therefore, after substituting Equation (8) above for Ex,

n xy,x = 16 1/AI1

Having shown tI'e procedures for deriving two of the engineering constants, thl,

final expressions for all of the engineering constants (including those just derived)

are now summarized:

17



E = I/(A 11 h)

E = MA 2 2 h)

V -C /E -A A
xy y x 12 11

V = -C/e = - AIA
yx x y 12 22

Gxy = 1/(A 66h) (9)

xy = A6/A

xyAy 2 6/A 22

Txxy = A1 6/A66

=A /A
yxy 26/66

A simplification of the process for calculating engineering constants is

possible for the regular symmetric cross-ply laminates in Figure 7.

For this case, since A16 = A26 = 0, we have, using Equations (7) and (9),

2
A = A A A -A A6

11 22 66 12 66

and
-- 2 A 6

A 11 (A22 A66 A 26 )/A = A 22 A66 /(A11 A22 A66 - A12 A66)

Therefore,

E= 1/(Allh) = (All - AI /A2 2 )/h (10)

*References 4 and 5 only included expressions for the coefficients of the
second kind r and n . It would appear that these coefficients are moreseon in xy,x nxy,y

frequently used than the coefficients of the first kind q and nrx,xy y,xy

18



Similarly, it may be shown that

E = (A 2 2 - 2/A)/h
y 22 1 2/A1 1)

V AI/A

Vyx = 12/A11

Gxy = 66/h

and

ri x= frl=r) 0
xy,x xyy xxy y,xy

It should again be emphasized that these formulas only apply for regular symmetric

cross-ply and not angle-ply laminas. For angle ply, Equations (8) and (9) in terms

of A.. must be used.

Experimental Verification

Using the two methods of calculation referred to in the previous section, engi- I
neering constants have been determined for a laminated composite consisting of 53

plies of T300 graphite fibers oriented 0* to the loading direction and 32 plies of
4

GY70 graphite fibers oriented 1450. Based on Method I (Smith's paper ), engineering

constants are calculated in Appendix C and are reported in the first column of Table

2. Engineering constants based on Method II (Greszczuk's work 3 ) were taken from the

theoretical curves of Reference 1 (reproduced in Figures 8-12) by reading off the

data points for a T300 and GY70 hybrid composition of 55.3 percent and 44.7 percent,

respectively. The theoretically predicted engineering constants in Table 2 are seen

to be in close agreement with the experimentally measured values for the hybrid

laminate. It is concluded that either Method I or II is sufficiently accurate for

calculating the engineering constants for composit laminates under in-plane force

and strain conditions. Since both methods are mathematically equivalent, the very

slight difference in numerical values is most probably associated with (a) interpo-

lating the theoretical values from the theoretical curves in Figures 8-12 for

specified percentages of T300 and GY70 and (b) plotting up the theoretical curves in

Figures 8-12 in the first place.
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TABLE 2 - COMPARISON OF THEORETICAL AND EXPERIMENTAL STIFFNESS
PROPERTIES FOR BOX BEAM HYBRID COMPOSITE

(THORNEL T300 AND CELION CY70)

Engineering Theoretical Theoretical 3

Constant (Method I)4 (Method II)3 Experimental

E 12.67 12.6 13.04
x

E 4.64 4.6 4.17
y

V 0.804 0.800 0.766
xy

V 0.294 0.295 0.244
yx

G 5.26 5.2 5.09xy

COMPUTER PROGRAM

Since the procedure for the calculation of extensional, bending, and coupling

stiffnesses, as well as the engineering constant, is a rather tedious one, especially

for a composite laminate involving many layers, computer programs have been written
7

to automate the process. One such program is called SQ5 and is available through

the Aerospace Structures Information and Analysis Center, Wright-Patterson Air Force

Base, Ohio. This program calculates the laminate stiffness properties mentioned

above and performs a stress analysis for a given set of applied in-plane forces and

moments.

The theoretical basis for SQ5 is plate lamination theory.5 ,6 First, for a

given laminate, the elements of matrix Equation (1) are generated. These equations

are then solved for the in-plane strains and curvatures in terms of applied forces

and moments by inverting the A and D matrices (B.. = 0). The strains and curvatures
ij

are next used to determine the strains and stresses in each lamina. Temperature-

induced stress and m ment resultants may also be calculated and then added to the

other known loads. The thermal analysis assumes a constant temperature throughout

the laminate thickness. The program also includes a simplified transverse shear

20
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PROPERTI ES

MATERIAL EL ET GLT ILT M TL

~ ___ _____(106 pSI1)

THORNEL 20.25 1.B4 0.85 0.25 0.0202

00. (T300)
GY70 42.0 0.86 0.60 0.25 0.005

15 0000

GY70 AT 145'

CL T300 AT 0'

10-1 T300 AT 90

5

20 40 60 80 100

45'' MATE RI A L(

Figure 8 -Young's Modules E xof Laminate as Function of Percent of (,Y70

(+45 Degrees) and T300 (0 Degree, 90 Degrees) Material (from Reference 1)
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PROPERTIES

MATERIAL EL  ET 1GLT AL T
20 LT M TL

THORNEL 20.25 1.64 0.85 0.25 0.0202
(T300)

GY70 42.0 0.86 0.60 0.25 0.005
15

Y

GY70 AT 450

to T300AT 00

100

> T300 AT 90'

EST DATA

0 I I i I

20 40 60 80 100

±45' MATERIAL (%)

Figure 9 - Young's Modulus E of Laminate as Function of Percent of GY70

(+45 Degrees) and T300 (0 Degree, 90 Degrees) Material (from Reference 1)
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TEST DATA
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0
/ 0
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/0I

do0 y

> 0 ___I
>=X , GY70 AT ±45'

I__T300 AT 0'

I..
0.4 a T300 AT 90'

IX

PROPERTIES

0.2 MATERIAL EL  ET GLT

IULT LTL

--- (106 PSI)

THORNEL 20.25 1.64 0.85 0.25 0.0202
T300)

GY7o 42.0 0.86 0.60 0.25 0.005

0.0 I I I

20 40 60 80 100

± 45' MATERIAL (%)

Figure 10 - Poisson's Ratio of Laminate as Function of Percent of GY70xy

(+45 Degrees) and T300 (0 Degree, 90 Degrees) Material (from Reference 1)
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0.8

0.6

0.4 T300 AT 0'c

0.2 30A 0

THORNEL 20.25 1.64 0.85 0.25 0.0202

GY70 42.0 0.86 0.60 0.25 0.006

0 .0 1 1 1 1
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±450MATERIAL W%

Figure 11 -Poisson's Ratio v y of Laminate as Function of Percent of GY70

(+45 Degrees) and T300 (0 Degree, 90 Degrees) Material (from Reference 1)
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PROPERTIES

MATERIAL EL ET GLT

do (106 PSI)-------T

THORNEL 20.25 1.64 0.85 0.25 0.0202

12 (T300)

GY70 42.0 0.86 0.60 0.25 0.005

10 -

8

CL0O

x
,

6
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GY70 AT 45

T300 AT 0

2
T300 AT 90
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0 20 40 60 80 100

45 MATERIAL (%)

Figure 12 - Shear Modulus G of Laminate as Function of Percent of GY70xy

(+45 Degrees) and T300 (0 Degree, 90 Degrees) Material (from Reference 1)
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analysis in which the shear stress distribution across the laminate thickness due to

known shear resultants Qx and Qy is predicted. It also has the capability to obtain

a laminate interaction diagram based upon the maximum strain theory of failure.

A description of the input data needed to use the program SQ5, excerpted from

Reference 7, is provided in Appendix D.

ANALYSIS OF LAMINATES

STRENGTH-OF-MATERIALS METHODS

Strength-of-materials methods and formulas are useful in varying degrees for all

of the structural applications of Table I once the appropriate equivalent elastic

properties for the laminate have been found. However, these methods are probably

most effective for structural applications (a) and (b) in Figure 4 which are con-

cerned with laminated beams and columns. In application (a), the cross section of

the member is considered to be laminated from top to bottom and has a rectangular

cross section (see Figure 5). In application (b), only the flange or flanges of the

member are of laminated construction (Figure 5). The web consists of a homogeneous

and isotropic metallic or nonmetallic material.

Laminated Beams and Columns

In fabricating beams or columns, it is advantageous to stack the layers so as

to provide symmetry about the midplane and, thereby, eliminate coupling between ex-

tensional and bending responses, as discussed earlier. All layers should probably

be oriented with the fibers parallel to the length of the beam. In some engineering

situations, a laminated member may not be fabricated from scratch but may be ob-

tained simply by cutting a narrow strip from a laminated plate which is readily

available and may have been laid up for other purposes. In these cases, the orien-

tation of fibers in the individual layers of the laminate may be oriented in either

a cross-ply or angle-ply arrangement, or a combination of both.
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The governing differential equation for the deflection of a laminated beam or

plate strip* (Figure 4a) is given by

2Ebl dy= M (12)

b dx2 x

where y is beam deflection, Mx is bending moment, Eb is the engineering constant for

an equivalent beam having the same bending rigidity Eb I as the actual laminated beam

(see Figure 5a), and I is cross-sectional moment of inertia (the equivalent beam is

assumed to have the same cross-seational dimensions, and therefore moment of inertia

I, as the laminated beam).

In order to obtain beam deflections by integrating Equation (12) and satisfying

boundary conditions, the engineering constant Eb for the equivalent beam must be

determined. To do this, one starts with the moment-curvature relations, in inverted

form, for a laminated plate

k =D M + D +D M
x 11 x 12 y 16 xy

k xD M +D M + D M (13)
y 12 x 22 y 26 xy

kxy Dl6 Mx + D26 My + D66 Mxy

which are analogous to Equations (6) involving in-plane forces and strains. Setting

M = M = 0 in the first of Equations (13), to represent one-dimensional (beam)
bending,

k = D M
x 11 x

or

1
- k = M (14)
D11

*The plate strip here is assumed to be in a state of plane stress. If it is

desired to model the plate strip as an element of an entire plate, it is necessary to
assume a plane-strain condition for the sides of the strip and to start with the
appropriate differential equation.
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which applies for a beam or strip of unit width. For a beam of width b, we have

d 2 = M(15)
D 1 dx 2  X

Comparing Equations (15) and (12), we see that the equivalent engineering constant

E bis obtained from

Eb 1 bI 11  ( 12-jbh3

or

Eb (1 bh3) b
D11

from which

Eb =12/(D 1h) (16)

It should be noted here that E bassociated with the bending response of a

laminate is different from E Xin Equation (8) associated with the extensional

response. This relates to the fact that E b is dependent upon the stacking sequence,

0 but E is not.

The bending stiffness D 11 inEquation (16) is needed to solve for E b' The

stiffness D 11is gvnb

2

11 D2D D D D )/A

whr 1 ( 22  66 26
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For regular symmetric cross-ply laminates (Figure 7), D 1 6  D 26 =0.

Therefore,

1
D 1-D -D 2ID

11 12 22

and

12 (D1  - D2/

Eb 11 h3  2 (17)

In addition to determining deflections of a laminated baam using Equations (12)

and (16), interest also exists in determining stresses. A coarse estimate of stress

in the laminated beam is obtained from the formula

M c
X (18)

x I

where M is the bending moment, c is the distance from the neutral surface to the

fiber location, and I is the beam cross-sectional inertia.

A more accurate estimate of stress in any particular layer of the beam may be

obtained as follows. Using Equation (18), the longitudinal strain in any layer of

the beam is obtained from

M C

Ex =yx /Eb El1(9
b

The lateral strain in the beam is found using

E: -V C (20)
y xy x

where V xyis given by one of Equations (9) for a laminate under extension.* Then,

the stress in any layer is given by

*We are neglecting the fact that the laminate is really under bending and not
extension in obtaining V x . in order to be more consistent, E in Equation (19)

could be replaced by F from Equation (8).
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CY . . .. ..

x Q1 1  x +'Q 1 2 y

(21)

y =Q12 E 2 x + Q Ey

where the reduced stiffnesses Q11, Q1 2' and Q22 are found for any layer or lamina of

the beam using the theory and procedures given in the first two sections of Appendix

A. The stress a will probably dominate over o .x y

Equation (16) for Eb is also needed for determining the buckling load of a

laminated column or plate strip. The critical buckling load is given by the

Euler formula

P = Tr2EbI/L2 (22)cr b

for a pinned-end laminated column of length L and cross-sectional moment of inertia

I.*

Members with Laminated Flanges

It is anticipated that laminated members may involve, in some instances, a

homogeneous metallic web with a laminated flange as illustrated in Figure 5b. In

addition to the I beam shown, the hybrid structural member may also take the form of

a T beam. An approximate determination of the flexural rigidity Eb I for these hybrid

members may be accomplished using a two-step process as shown in Figure 5b. In the

first step, the hybrid I-member with laminated flanges is converted into a hybrid

I-member with homogeneous flanges by mathematically replacing the laminated flange

material with a nonlaminated material having an equivalent engineering constant Ef.

The equivalent constant Ef is found using Equations (7) and (8) given earlier. The

second step is to convert the hybrid member with a homogeneous flange material to a

nonhybrid member where the flange material is replaced by a new flange of width b2 ,

having a modulus E identical to that of the web of the I beam. The new requiredw

flange with b2 is found from

Efb

b E flb
2 E

w

*See a strength-of-material text or handbook for dealing with other end bound-

ary conditions.

30



Once the initial hybrid beam has been converted into the final equivalent beam just

described, the moment of inertia 12 is computed for this final cross section. The

flexural rigidity E w 2 is then substituted for EbI in Equation (12) for calculating

beam deflections and in Equations (19) as the first step in determining stresses in

the individual layers of the laminated flange. Finally, it should be pointed out

that the analysis procedure for a structural member with a laminated flange intro-

duces an approximation which is not present in the laminated beam analysis of

Figure 5a. The approximation is associated with computing the equivalent flange

modulus Ef above by assuming that the strain distribution over the depth of the

flange is uniform. Actually, the strain distribution varies slightly due to bending

of the overall beam cross section.

CLASSICAL METHODS

Laminated plating has potential applications in panels, grillages, and three-

dimensional hybrid structures, as illustrated in Figure 4. For analysis purposes,

the plating in these applications may often be modeled as a single plate, as shown

in Figure 13, if appropriate edge boundary conditions are selected.

Timoshenko8 and Jones5 discuss classical methods for analyzing the bending,

buckling, and vibration of rectangular orthotropic plates which may be directly

applied to regular symmetric cross-ply laminates (see Figure 7). One of the approxi-

mate solution techniques described in these references uses Fourier series to repre-

sent the plate loading and deflection shape. Formulas are presented in the next

section which were derived based on this approach. As mentioned above, the formulas

apply to specially orthotropic laminates involving cross-ply fibers for which the

stiffnesses D1 6 and D26 in Equations (l)-(3) are equal to zero. The solution pro-

cedure for regular symmetric angle-ply laminates is more complex since the DI6 and

D stiffnesses are no longer zero but may be small when a large number of layers
26

are involved. The analysis of nonsymmetric laminas involving nonzero B.. coupling
ii

stiffnesses between extension and bending introduces even further complexity into

the analysis.
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(a)

//

V (b)

Figure 13 - Simply Supported Laminated Plates Subjected to (a) Lateral
Bending and (b) Buckling Under In-Plane Loads

Lateral Bending of Laminated Plates

Using the solution procedure of Navier which is described by Timoshenko8 and

,Jones, the deflection of a uniformly loaded plate with simply supported edges is

given by

16Po 1 '- I--in ( m X)a sin (n )

w(xy) = mn a2 sin

m=1,3,5.... n=1,3,5 .... D,, (m) + 2 (D + 2D6)(m) (b) + D2 2  b)

(23)

32



where PO is the uniform load per unit area,

a and b are the side dimensions of the plate,

x and y are variable distances parallel to a and b sides of plate,

m and n are odd integers, and

D i, D1 2, D22 and D66 are defined in Equation (3) and computed in Appendix B
for a given example of a four-layer laminate.

The strains in any layer of the laminate at a distance z from the middle surface

may be found by substituting Equation (23) for w into

a2w

x ax2

(24)
2w

y 3y 2

and

2w

Stresses are then obtained by substituting Equations (24) for strain into Equations

(4). By following the procedure just outlined, formulas have been generated for

computing these stresses. In arriving at these formulas, the series in Equation (23)

has been written out for m taking on values of 1 and 3 and for n taking on values of

I and 3. The stresses in any layer are then given by

x= Qll x + Q12 Ey

and

y = Q12 Ex + Q (25)

where
16Poz (22

= 16z t(CI+C 2)(/a)
2 + (C3+C4 )(3Tr/a)2

and
16p0z 2 2

= 6 {(C1+C 3 (iT/b) + (C 2+C4 )(3Ti/b)2}
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and

CI = i/{Dll(i/a)4 + 2(D 1 2 +D 6 6 ) (i/a) 
2 (1/b)2 + D2 2 (i/b)

4 }

42 2 24C2  (_/3)/{D11 (1/a) 4 + 2(D12+D66 )(1/a) (3/b)2 + D2 2(3/b)

C3 = (-/3)/{Dl(3/a)4 + 2(D12+D )(3/a)2 (1/b)
2 + D22 (1/b) 4

C4 = (1/9)/{D 1 1 (3/a)
4 + 2(D12+D66 )(3/a)

2 (3/b)2 + D2 2 (3/b)
4 }

The stiffnesses Qill Q1 2' and Q22 are calculated for each layer using equations in

Appendix A.

Buckling and Vibration

Equations are presented in this section for calculating the buckling loads and

vibration frequencies of rectangular laminated plates having simply supported

boundaries and a regular symmetric cross-ply layup of fibers (defined as specially

orthotropic plate, see Figure 7).

The buckling stress a of a specially orthotropic plate under an axial loading
cr

(Figure 13) is given by
5'8'9

= f [ ~ ( 1 + 6 ) (n ) + D 2 (n ) 4  (a ) 1 (26

°cr h a1 6 2_

where a, b, and h are the length, width, and thickness of the plate, m and n are

integers indicating the number of buckle half wavelengths in the x and y directions,

and Dill DI2 and D22 and D66 are defined by Equations (l)-(3). Rearranging Equa-

tion (26) and recognizing that the lowest value of buckling stress will be associ-

ated with n = 1,

acr = [+ 2(D +2D + D a 2 
T (27)
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The number m of half waves in the x direction is determined by taking the deriv-

ative do /dm, setting it equal to zero, and solving for m. This gives
cr

M v7 F (28)
b 22 11

If the m computed using Equation (28) happens to be an integer, which is unlikely,

this value of m gives the actual number of half waves in the x direction, and the

corresponding minimum buckling stress results from substituting Equation (28) into

Equation (29), which gives

0r m D Di7 + (D12+2D66)] 2h (29)

However, if the m computed from Equation (28) is not an integer--the most frequent

case--it is necessary to substitute the next higher and lower integer values into

Equation (27) to see which corresponds to the lower buckling stress. For example,

if m is computed to be 1.6, one should try m = 1 and m = 2 in Equation (26) to see

which m values results in the lower buckling stress. If m should turn out to be

less than 1, say m = 0.6, then'm = 1 corresponds to the lowest buckling mode and

the corresponding critical stress is found by substituting m = 1 into Equation (27).

Buckling loads for specially orthotropic plates under other loading conditions

(biaxial and shear) as well as other boundary conditions (such as two edges ly

supported and two edges clamped or elastically restrained, or other combinaLlons)

are provided in Reference 9.

In addition to having analytical means for investigating the stability of

laminated plates, tools are also needed to estimate the fundamental frequencies of

vibration of laminated plates. Fundamental plate frequencies are necessary to

insure that these frequencies are sufficiently removed from exciting frequencies

due to machinery or other cyclic driving sources so as to prevent resonance or

near-resonance conditions which may result in excessive deflections, fatigue, or

other structural damage. The natural frequencies of vibration w of rectangular

laminated plates with simply supported boundaries may readily be computed using

the equation
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1,t- = 2 -)D + 2(DI 2 +2D6 6 ) i(i) (a ) + D
11 (ia 1 66h 22b

where p is the mass density of the plate, a, b, and D ij's are identical to those

defined for laterally loaded plates and buckling, and m and n refer to the different

mode shapes of vibration. The fundamentdl frequency of vibration is obtained by

setting m and n equal to 1. Reference 6 gives formulas for computing the natural

frequencies of vibration for specially orthotropic laminated plates with all clamped

boundaries or for various combinations of simply supported and clamped.

FINITE-ELEMENT METHODS

Analytical methods were given in the previous section,; for analyzing several

basic laminated components in hybrid structures. These method. isolate a laminated

beam, column, or plate component of the structure and introduce the appropriate

boundary and loading conditions to represent the interaction of the isolated member

with the remainder of the structure. Since the results of these methods (strength-

of-materials and classical analyses) are usually of an approximate nature, the

methods are most suitable for application in the early stages of design. In order

to obtain more accurate results in the later and final stages of design, the analyst

frequently turns to the finite-element method and the computer programs which imple-

ment this method. one of Llie advantages of finite-element analyses is that these

analyses minimize the number of assumptions as to the loading and constraints on the

variaus components of the structure.

In analvzing hybrid structures, at least four options are available for model-

ing an,i treating the lamLnated components of the structure. These four approaches

are illustrated in Figure 14 for the tapered composiLe hcx beam of Figure I which

simulates the forward foil on the PCH-1 hydrofoil. ''l,e composite box beam has

graphite epoxy Laminated skins with internal steel spars and is supported and loaded

as indicated in Figure 1.

Approach (l) in L'igure 14 entails modeling the full laminated skin thickness in

the box beam by equivalent two-dimensional (2D) plate elements having anisotropic

material properties which are equivalent to those of the multilayered laminate.
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Figure 14 - Finite-Element Approaches for Laminated Skins in

Composite Box Beam
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This modeling procedure was employed at DTNSRDC* in analyzing the composite box beam.

The procedure allows a determination of the in-plane normal stresses o and o and
x y

shear stress T in the laminate, in an average or equivalent sense. These equiva-
xy

lent laminate stresses may be used to determine the in-plane stresses in the individ-

ual layers of the laminate in an approximate way (see Appendix F). However, it is

not possible to determine the interlaminar shear stresses T and T by adoptingxz yz
equivalent 2D plate elements for the full laminate. The latter stresses are fre-

quently the governing ones, particularly near free edges in laminates produced by

cutting or drilling holes during fabrication.

Approaches (2) through (4) in Figure 14 facilitate a determination of interlami-

nar shear and normal stresses. In applying approach (2) in Figure 14, the laminate

thickness is discretized by stacking a suitable number of 3-dimensional (3D) solid

elements to represent the full thickness of the laminate. It is clearly not prac-

tical to have as many 3D elements vertically through the thickness as there are

actual layers since there are frequently a large number of layers involved (approxi-

mately 80 layers for the skin of the box beam). Instead, the layers, may be grouped

into as many layers as necessary (four layers in Figure 14) to determine the inter-

laminar shear and normal stresses at desired locations between layer or plies of the

laminate. This second modeling approach was adopted by the Virginia Polytechnic

Institute1 0 (VPI) in analyzing the composite box beam. However, using this approach,

the overall box beam deflection results were in agreement with neither the results

of DTNSRDC's finite-element analyses using approach (1) nor with the box beam test

results. It is suspected that the major reason that VPI's analysis did not agree

with the others :as their use of finite elements having very large aspect ratios.

In addition, the distribution of interlaminar shear and normal stresses along the

length of the box beam also exhibited some questionable oscillations. Therefore,

further work is apparently still needed on the implementation of this approach.

Approaches (3) and (4) in Figure 14 utilize a beam-type model of the box beam.

Because of this modeling approximation, the resulting interlaminar shear and normal

stresses are not as accurate as they would be with approach (2) assuming all analyses

are carried out properly. By stacking 2D-type elements in the yz plane in approach

(3), a plane stress analysis is accomplished for which a = 0, as indicated in
x

*Stein, M.C., "A Nastran Analysis of a Composite Laminate Box Beam for Applica-
tion to Navy Hydrofoils," reported informally as enclosure (1) to DTNSRDC ltr
77-173-186 of 9 Dec 1977.
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Figure 14. Since the box beam skins are, to some degree, restrained in the trans-

verse direction by the load block at the one end and the clamping support at the

other, a plane strain analysis where the transverse strains in the skin are set

equal to zero (but a is not zero) may be a better approximation to the box be-K

havior when using a beam-type model. This plane strain analysis may be accomplished

by stacking 3D finite elements as indicated in approach (4) of Figure 14. It should

be noted that in implementing approaches (3) and (4), it is important that the

portion of the total box beam load which is carried by the beam strip be approxi-
mately determined and applied to the beam model. It also should be noted that both

approaches (2) and (4), involving 3D elements, necessitate that five additional

engineering constants (over those required with the 2D finite elements in approaches

(1) and (3)) must be experimentally measured: Ez x V, , G , and G Finally,
z yz xz, yz V

in terms of the cost to carry out the above approaches, it can be said that approach

(3) will be the least costly and (2) the most costly. Approaches (1) and (4) will be

somewhere in between in cost; it is difficult to rank them with respect to each other

since the cost would be dependent on the number of elements used in each case.

Composite Box Beam Analysis

Using the computer program NASTRAN, a finite-element analysis was performed

by DTNSRDC on the composite box beam in Figure 1 to verify the results of a strength-

of-materials analysis and to provide a more detailed insight into the beams struc-

tural behavior. The NASTRAN idealization for the box beam is shown in Figure 15.

This report focuses on those aspects of the finite-element idealization and analysis

concerned with the laminated skins since the steel spars may be modeled using pro-

cedures already familiar to the average NASTRAN user.

Modeling of Laminated Skin. The skin of the box beam is a reinforced epoxy laminate

consisting of 44.6% GY7O at +450 and 55.4% of T300 at 0% with a constant thickness

of 0.5 in., except for regions near the load block and fixed end. The modeling of

the laminated skin was accomplished using the NASTRAN plate element CQUAD1. Accord-

ing to the NASTRAN user's manual, the CQUADl element is intended for application

to sandwich plates having different elastic properties in bending, membrane, and

shear. No mention is made of using CQUAD1 elements for laminated plates in the

manual. However, the idea occurred at the beginning of the composite box beam

39

.___ .



COUAD1 PLATE MEMBRANE AND
BENDING ELEMENTS

90

ofROD ELEMENTS

1 EQUAL ISOPARAMETRICL101 120 HEXAHEDRON

aSKIN ELEMENTS

SHEA PANEL5ELEMENT

Z 15 9SPA3CE3
11_ r 5 101.1212514

I_11UA ?iACs 24 131 137 ISO F-

MODE 1EG3N 14 IN ATBAPAESSM.

ROD ELEMENTS

SPAR ELEMENTS

Figure 15 - NASTRAN Finite-Element Model for Composite Box Beam

analysis that the CQUADI element could be used to model the laminated skin as an

equivalent (nonlaminated) skin having the same thickness and sane anisotropic elastic

properties under membrane and bending action. (Transverse shear stiffness was

assumed to be infinite.) This approach was therefore followed in the box bean

analysis.
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From a structural point of view, the NASTRAN membrane plate element CQDMEM

could have been used for modeling the box beam skin since the local bending of the

skin is minimal due to the configuration and loading. Instead, the CQUAD1 element

with both bending and membrane capacity was chosen because it provided a little

additional accuracy, as well as reduced the number of unrestrained degrees of freedom

which had to be constrained to avoid singularities. This minimized errors caused by

manual restraint of these degrees of freedom. In some applications, such as lami-

nated plates under lateral loads where only bending occurs, the use of CQUAD1 or

CQDPLT (with bending capacity only) elements are mandatory.

The NASTRAN element connection card CQUAD1 references a property card PQUADI

which, in turn, references a material property card MAT2. The MAT2 cards define the

material properties for linear, temperature-independent, anisotropic materials. This

card requires that the program user specify the elements Gij of the two-dimensional

anisotropic stress-strain relations below (see Reference 11, pp. 2.4-143):

1o -G 1C1 G 13CCI
12 12 22 23 12

o3 [G 1 3 G2 3 G3 3 - 12

The elements G. of the stress-strain relations are synonymous with the variable
_, 1*)

Qij which is used in this report and which is also common terminology in laminatedii 5

plate theory. It is important to distinguish the reduced stiffnesses Gij above, as

used in NASTRAN, from shear moduli. The only exception is that the reduced stiff-

ness G (as defined in NASTRAN, but not in this report) turns out to be the shear

modulus GI for a unidirectional lamina (see Appendix A). The procedure for deter-

mining the Gij or Q.j consists of the following steps:

1. The elements Qij of the two-dimensional stress-strain relations (Equa-

tions (4) given earlier)

CY y Q 2 Q22 Q26

Txy Q16 Q26 Q66 'Yxy
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are first determined for the individual layers of the laminate using the procedure

in Appendix A.

2. The Q from step (1) are next used in Equations (3) to calculate the

extensional and bending stiffnesses A and D for the full laminate, as de-

scribed in Appendix B. * *

3. Lastly, reduced stiffnesses Qij (m) and Qij(b) for the full laminate are

found from the A and D using the two equations (see Appendix E)
ij Dii

Ij (M) = Aij/h

and

Qand = Di /(h 3 /12) (30)

where h is the thickness of the laminate.

Following the procedure outlined above, the Q i (m) and Qij(b) for the lami-

nated graphite epoxy skin of the box beam were found to be

8 7 6-
017002x08 0.44043x07 0.18775x1061

Qij(m) = 044043x7 0.55951xl07 0.18776x106

6 6 71
LO.18775xlO 0.18776x10 0.47976X10_

and

0.16597xi08 0.48865xi07 -0.61273x10
I "

Qli(b) L0"48865xl07 0.60800xi07 0.61273x101 (31)

-0.61273x101 0.61273x101 0.52632x0 7

In many laminate applications the Qii(m) and Qij(b) will turn out to be similar in

value, as was the case for the box beam laminate. Greater differences in magnitude

for these reduced laminate stiffnesses may be expected when the individual layers of

a laminate have more widely varying stiffness properties. For example, if a laminate

is fabricated of rubber and steel layers, with the steel placed in the outer layers
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of the laminate, the Qij() and Qi (b) will exhibit greater differences. Another

way of looking at it is that the Dij (and therefore Qij(b)) are sensitive to the

stacking sequence of the laminas while the Aij (and therefore Q ij(m)) are not.

Other Modeling Considerations. The box beam skin in the vicinity of its fixed end

presents special modeling considerations because of a scarf joint (see detail A of

Figure 1) at that location, which involves a hybrid cross section made up of both

composite and steel materials. This was solved by use of a "weighting" formula that

combines proportionate effects from both steel and composite for a cross section to

arrive at the membrane and bending stress-strain relationships. At the opposite free

end of the beam, referred to as the load block end, the entire load block region

(steel and composite) is considered equivalent to an all steel block, for simplifi-

cation of the analysis, since the major part is steel. This load block was modeled

with isoparametric hexahedron elements, as indicated in Figure 15.

Finally, some comments are made with respect to boundary conditions. When the

box beam is viewed from the side (see Figure 1), it is noticed that a massive metal

cross section extends a few inches from the base plate. To simplify the model, fixed

end conditions are imposed at the cross section where this steel sleeve section ends

and the spars and skin continue. This eliminates complexity of the model by exclud-

ing a section that would experience relatively little deformation under the applied

load. Symmetry of the beam suggests a further reduction of the model by eliminating

half of the beam split lengthwise along its longitudinal axis. This artificial

boundary is fixed against transverse displacement and rotation about the longitudinal

axis so that behavior is consistent in the absence of the other half. All nodes of

the structure are fixed against rotations about axes normal to the plate elements

because these elements do not offer resistance to this type of displacement and

singularities would result if these were not constrained. The isoparametric hexa-

hedron elements pose a similar problem to the plate elements, except no rotational

degrees of freedom are allowed. Therefore the nodes bordering these elements are

fixed for rotation about all of the space axes.

Technique Effectiveness. Using the NASTRAN model just described, a finite-element

analysis was performed on the composite box beam for a 56-kip end load. The analysis
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results were useful in that they (a) provided a check on the strength-of-material

calculation, (b) provided detailed results on the structural behavior of the compos-

ite box beam, and (c) demonstrated the utility of the NASTRAN and other similar

finite-element computer programs for the analysis of hybrid structures involving

composite laminates.

A detailed discussion of the analysis results is provided elsewhere.*,** The

aim of this report is to present the finite-element technique for laminated com-

posites and to provide a demonstration of the effectiveness of this technique for

hybrid structure such as the composite box beam.

The longitudinal bending stresses in the composite skin and steel spar of the

box beam are presented in Figure 16 as obtained from the NASTRAN analysis, strength-

of-materials calculations, and static tests. Comparing these results for the lami-

nated skin, it is seen that the NASTRAN curve is in very good agreement with the test

data. Similar, and possibly a little closer, agreement was found for the flange of

the steel spar. The strength-of-materials curve in Figure 16 is seen to underpredict

the test data by approximately 5.5 percent at about 35.0 in. from the fixed end where

the governing stresses were obtained. These comparisons demonstrate the effective-

ness of the finite-element approach described earlier for composite laminates and

also show that conventional strength-of-materials calculations are effective tools

for stress prediction in laminates.

Since the laminate stresses in Figure 16 represent, in a sense, averaged values

or equivalent material values for a box beam skin having equivalent anisotropic

properties, the stresses are not necessarily the maximum values which might occur

in any of the layers. For example, the stresses in the first or outer layer of the

skin laminate may exceed the equivalent material or averaged stresses for the entire

laminate. The procedure for computing the stresses in any layer of the laminate is

given in Appendix F.

While the stresses resulting from the finite-element analyses were only averaged

val#v for the laminate skin and required further processing to get individual layer

slresses, the nodal point deflections resulting from the analysis (see Figure 17)

represent the actual deflections and need no further processing.

*Stein, M.C., "A Nastran Analysis of a Composite Laminate Box Beam for Appli-
cation to Navy Hydrofoils," reported informally as enclosure (1) to DTNSRDC ltr
77-173-186 of 9 Dec 1977.

**Barry, M. and W. Couch. "Advanced Composite Box Beam: Static and NDE Test
and Evaluation" (in preparation).
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Foil Flap Analysis

The finite-element procedure applied to the composite box beam and discussed in

the previous section was also used to analyze the composite flap for the aft foil of

the hydrofoil PCH-I. The composite flap, illustrated in Figure 2, consists of a

laminated skin with a titanium crank spar substructure assembly. The composite skin

is 1/2 in. thick and is made up of 36 plies of a graphite epoxy fabric (T300)

oriented at 445 deg and clad by 10 mils of titanium.

This report does not discuss results of the foil flap analyses since they are

given in Reference 2. Instead, some of the significant differences in structural

loading, modeling, and response of the laminated skin in the foil flap and the box

beam are pointed out here. Some comments are first made with respecc to the box

beam. Because of the end loading on the box beam, the laminates in the upper and

lower skins or flanges are subjected to longitudinal strains which vary only slightlv
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through the thickness of the skin. Since the in-plane longitudinal strains, as well

as the transverse and shear strains, are essentially uniform through the skin thick-

ness, a membrane-type plate element CQDMEM could probably have been used in the

NASTRAN analyses. Instead, the CQUAD1 element was employed, with both membrane and

bending capacity, to improve the accuracy slightly, but mainly to reduce the number

of degrees of freedom which had to be otherwise constrained, as mentioned earlier.

Although the CQUAD1 element may have been somewhat optional in modeling the

box beam skin, this element was necessary for representing the foil flap skin in

order to accommodate the mostly local bending response associated with the distrib-

uted pressure loading on the foil flap.

Another difference between the models for the laminated skin of the foil flap

and the box beam has to do with the comparative magnitudes of the reduced stiffnesses

Qij(m) and Qij(b)" The greatest difference in these reduced stiffnesses for the boxijm JJ* 6 *6

beam was only 2.4 percent (Qll(b) 17.002xi06 and Qll(m) 16.597106 ). With so

little difference, the membrane reduced stiffness could have been input for both the

membrane and bending components of the CQUAD2 element without much loss in accuracy.

However, in the case of the laminated foil flap skin, the greatest difference in

magnitude between Q*(b) and Qi *m) was found to be 13.5 percent (Qll(b) =6

and Q = 6.616x06 ). Therefore, it is more important for the foil flap analysis
11l(m)

than it was for the box beam that the distinct values for Qij(b) and Qij(m) be used.

SUMMARY AND CONCLUSIONS

Since the liklihood exists that laminated composites will be increasingly used

in the fabrication of ship and marine structures in general, it is important that

appropriate design and analytical methods be available for supporting their

application.

Relatively recent applications of laminated composites in the U.S. Navy have

included the forward foil test component and the control flap on the foil of the

hydrofoil PCH-l. It is possible that future applications could eventually include

some of the other basic components of ship structure, such as stiffeners, girders,

stanchions, shell, and bulkhead plating. All of these past and future applications

may be modeled and analyzed as one of the laminated structural components (i.e.,

laminated beam, column, plate, panels, or grillage. . . see Figure 4).
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Three types of analytical methods which are commonly applied to metallic struc-

tures have been extended to laminated composite applications. These include (Table

1): strength-of-materials techniques; classical methods for the bending, buckling,

and vibration of laminated plates; and finite-element and finite-difference methods.

In order to apply these methods to laminated composites, it is necessary to represent

the laminated member by an equivalent nonlaminated member having equivalent elastic

properties.

Corresponding to each of the three types of analytical methods there are three

kinds of elastic properties which must be evaluated in advance by the structural

analyst. The required stiffness properties are: engineering constants Ex, Ey,

V v and G for strength-of-materials analyses; extensional and bending stiff-xy yx xy
nesses Aij and Dij for classical plate analyses; and reduced stiffnesses Q.j for

finite-element analyses. These three sets of stiffness parameters are not independ-

ent but are analytically related and derived from each other. Extensional and bend-

ing stiffnesses are normally calculated first and then used to compute the engineer-

ing constants and the reduced stiffnesses as needed. Since the computation of these

equivalent stiffnesses is a tedious procedure, if performed manually for a laminate

of many layers, computer programs have been written to automate the procedure. One

nonproprietary program which is readily available to the public is SQ5 (see Appendix

D). If one chooses to perform these calculations manually for a laminate of only a

few layers, or if one wants to better understand the theory behind the stiffness

calculations, then refer to Appendices A, B, C, and E. As an illustration of the

manual process for computing engineering constants, calculations are given in

Appendix C for the laminated skin of a composite box beam (for application to the

forward foil of the PCH-l hydrofoil) consisting of 53 plies of T300 graphite fibers

and 32 plies of GY70 fibers. These constants were found to be in close agreement

with experimentally measured engineering constants, as indicated in Table 2. This

result demonstrates that the equivalent engineering constants for multilayered

laminates may be adequately determined analytically without resorting to more costly

experimental means. It should be noted, however, that it is common practice to use

experimental measurements to determine the unidirectional elastic moduli for the

constituent layers within the laminate since existing analytical procedures such as

the "law of mixtures" are not always of sufficient accuracy. The law of mixtures
5

simply computes the unidirectional elastic modulus of a fiber-imbedded layer from
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the elastic moduli of the fiber and matrix materials and the percentage composition

of each. It is important to note that in determining the equivalent stiffnesses

for a laminate, a distinction is made between equivalent stiffness properties under

extensional and bending responses. For example, the engineering constants shown in

Table 2, and referred to above, are based on a purely extensional response of the

box beam laminate.

As mentioned above, three types of analytical methods are discussed in this

report for analyzing the structural response of hybrid structures involving com-

posite laminates. Solution methods are discussed for analyzing laminated beams,

columns, and rectangular plates. In the case of plates, engineering formulas are

readily available for evaluating the deflection, buckling, and vibration behavior

of simply supported rectangular plates where the laminate construction consists of

a cross-ply arrangement (Figure 7). For plates having angle-ply lax'ups, the analyst

must develop desired solutions by using the governing differential equations and

boundary conditions.

The finite-element method is the most general tool for analyzing the structural

response of laminates. At least four finite-element approaches are available, as

illustrated in Figure 14, for investigating laminates depending on the type of stress

results desired. The first approach involves the modeling of laminates using 2D

plate elements where different equivalent stiffness properties are allowed for

membrane and bending. This approach, which was successfully employed and validated

on the composite box beam, results in determination of in-plane normal end shear

stresses within the laminate. These stress results correlated well with test

results and strength-of-materials calculations. The finite-element analysis itself

produces equivalent stresses for the full laminate, but these may be further pro-

cessed to give stresses within the individual layers of the laminate. If a knowl-

edge of the interlaminar shear and through-the-thickness normal stresses is required,

as is frequently the case for many applications, one of the other three approaches

in Figure 14 must be implemented.
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APPENDIX A

REDUCED STIFFNESSES FOR INDIVIDUAL LAMINAS

A.l. REDUCED STIFFNESSES FROM UNIDIRECTIONAL MODULI

The theory below applies for a single lamina or layer of a composite laminate

having fibers imbedded in one direction only (see sketch).
Once the unidirectional elastic constants E, E2v 12' V21' and C12 are avail-

able from coupon tests for a given individual lamina, the two-dimensional (2D)

stress-strain relations may be obtained in terms of these constants from

_Q Q1  01 W
a2 = Q12 Q22 0 J 2 (A.1)

TI12 0 0 Q 66 Y12

where the QiJ, the reduced stiffnesses, are given by

Q1I =  T - 12 V 21 
2 FIER

12 E2 V 21 E1

12 21 12 21

E2

Q22 = - v12 V21

and

Q66= G1 2

A.2. TRANSFORMATION OF REDUCED STIFFNESSES TO
DIRECTION OF LOADING

Since the individual laminas may be stacked up at nonzero (45 deg, as an

example) angles to the direction of loading to achieve desired strength and stiffness
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for the overall laminate, it is necessary that the 2D stress-relations Equation (A.1)

for the laminas having fibers oriented at some angle to the direction of loading be

transformed to the direction of loading on the laminate. The transformed stress-

strain relations have the form

x Qll Q12 Q16 Ex

1 yQ12 Q2 2 Q26

Txy Q16 Q26 Q66  Yxy

where the transformed reduced stiffnesses Qij are computed from

Qll =  U 1 + U2 cos2O + U3 cos46

y

Q2= U 4 - U 3 cos48

Q22 = UI - U 2 cos26 + U3 cos4.

S= -- 2U sin29 - U sin4x
16 22 3 wx

(LOAD DIRECTION)

S--2U sin28 + U sin 4 6
22 2 3

and

Q66= U 5 - u3 cos 40

in which

3QII + 3Q + 2Q12 + 4Q 66

U= -

U QII - Q22

2 2
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QII + Q22- 2Q1 2 - 4Q66
3= 8

U QI + Q 2 2 + 6Q1 2 - 4Q 6 6U4 =8

and

u QII + Q22- 2Q 1 2 + 4Q66
38
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APPENDIX B

LAMINATE EXTENSIONAL AND BENDING STIFFNESSES

As was discussed earlier in the main text, the extensional and bending stiff-

nesses A ij and Dij, respectively, for a laminate are expressed by (assuming a

symmetric layup about the midplane so that B = 0)

h/2 N

ij Qij dz =f (zk zk-1_)

-h/2 k=l

and (B.l)

h/2 N
2--( 3 3

D ij = Qij z dz = Qij)k (zk- k-1)

-h/2 k=l

Once the transformed reduced stiffnesses Qi. have been found using the proce-

dure of Appendix A, the task of finding A . and D.. above entails carrying out

the indicated summations involving the Qi. for each lamina and the distances to the

upper and lower surfaces of the laminas, z kl and Zk, respectively (see sketch

below).

The task of computing the A.. and D.. using Equations (B.1) for a laminate with1J ii

many layers is a tedious one and well suited for the computer, especially the D..
lj

DETERMINING A..
1J

The summation process in Equation (B.l) for determining Aij is illustrated below

for a laminate with four layers having symmetry about the midplane.

Aij = (Qij) 1 (Zl-ZO) 

+ (Qij)2 (z2-z I ) (Bh2z)(B. 2) hh2 _--=O)

+ (QiJ)3 (z 3 -z 2 ) 3 - z4 P3z

+ (Qi)4 (z4-Z3) 4
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For the case where the four layers are of equal thickness (h/4),

z 0 = -h/2

= -h/4

z 2 = 0 (B.3)

z 3 = +h/4

z4 = +h/2

Therefore,

Aij = (Qij)Ih/4 + (Qij)2h/4 + (Q ij) 3h/4 + (Qij)4h/4

= [(Q ) + (Q + (Q) + (Qi4 Ih/4 (B.4)
iI ii )2 +(ii )3 i

For the case when the laminate thicknesses h through h are all different,
14

Aij = (Q i)l h1 + (Qij)2 h 2 + (Qij )3 h 3 + (Qij)4 h4  (B.5)

However, for laminates having a symmetric layup (such that the coupling stiffnesses

B.. = 0, as assumed earlier),

h I  4 ha (Q ij) = (Q j)4 =(Qij)a

(B.6)

2 3 hb (Qi) 2 = (Qi)3 : (Qijb

In this case,

A. = 2(Q.. h + 2(Q h hB7ij ij a a ij b b (B.7)
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DETERMINING Dij

The bending stiffness Dij is given by the following summation for the four-

layer laminate previously considered where the four layers are of equal thickness

h/4:

1- 33 1 - 3

D 3ij (Qij)l (z1 z0) + 3Qii 2 (z 2 -zl)

(B.8)

1 33 1 3 3
+ ) (Z3 z3-z2) + 3(Q 1 )4 (z4-z3)

Substituting zI through z4 in terms of h from Equations (B.3), there results

D.. = [7(Qi) + (Qi) + (Qi) + 7(Qi) 192

For the case where all four layers are of unequal thickness, the D.. counterpart of

Equation (B.5) for A.. may be written down, but not as concisely as Equation (B.5).

Recall from before that the absence of symmetry in the layer thicknesses or the

Qij about the midsurface of the laminate will necessitate the computation of the

B.. from Equation (3) since they are no longer zero. However, in most structural
1J

designs, the laminates are designed with built-in symmetry to reduce the complexity

of the structural analyses needed to assess structural performance and integrity.
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APPENDIX C

NUMERICAL EXAMPLE: COMPUTATIONS FOR HYBRID BOX BEAM LAMINATE

DESCRIPTION OF HYBRID LAMINATE

Composition

53 plies of T300 graphite fibers at 00 to loading

direction (ply thickness = 0.00516 in.)

32 plies of GY70 graphite fibers at +450 to loading

direction (ply thickness = 0.00692 in.)

Stacking Sequence

00, (03, +450)8, 03, (+450, 0)8 00

C.l. EXTENSIONAL STIFFNESSES

Engineering Constants for Unidirectionally Reinforced Lamina (from Reference 1):

Constant T300 Ply GY70 Ply

E1  20.41xi06 psi 42.9xi06 psi

E2  1.42x106 psi 0.89xi06 psi

V12 0.181 0.482

v 21 0.0126 0.010

G1 2  0.792xi06 psi 0.614xi0 6 psi

*Computed from v12 = V21 E1/E2 "

59



Reduced Stiffnesses for Unidirectionally Reinforced Lamina (see procedure in

Appendix A, Section A.1):

Stiffness T300 Ply GY70 Ply

Q (1-v 1V ) 20.457xl10 43.108x10
V1 2 E1

Q )1 2 .5x 6 0.3xO6

1l2 =(1-v 12V 2)O.8X0.410

Q2 (1-v 2V ) .423xl0 6.894xl10

Q6 GO2 .792xl10
6  O.614xl10 6

Transformation of Reduced Stiffnesses to Direction of Loading (see procedure in

Appendix A, Section A.2):

T300 Plies: Since T300 plies are already oriented in the direction of loading,

no transformation of the Q..j for T300 is necessary. Therefore, Q. =j Q...

GY70 Plies: Substituting the Q..j values from above,

U 1 = (3Q 11 + 3Q 22 + 2Q 12 + 4Q 66 )/
8 = 16.91555x10

U 2 = (Qll - Q22) /2 = 21.10674xl10

U 3 = (Q11 + Q 2- 2Q 1 2 -
4Q66 )/8 = 5.08550xl10

U4 = (Q11 + Q2+ 6Q 1 2 -
4Q66 /8 = 5.51656xlo6

and
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Then, for plies with fibers at e - +45 deg,

Q = U1 + U2 cos26 + U 3 cos40 = 11.83005x10
6

Q12 = U4 - U3 cos40 = 10.60206x0
6

6
Q22 = U1 - U2 cos26 + U3 cos40 = Ii.83005xi0

- I U2 sin2e - U sin4e = -i0.55337Xi0
6

2 = - 1 U sin2e + U sin40 = -i0.55337xi06
Q2 2 2 3

and

Q66 = U5 - U3 cos40 = 10.78500x106

For the plies having fibers at 0 = -45 deg,

QI1 = 11.83005x106

Q12 = 10.60206x106

Q22 = 11.83005x106

Q16 = 10.55337x106

Q26 = 10.55337xi0
6

and

10750 6
Q66 = I"80x0

Determination of Extensional Stiffnesses A..: Extensional stiffnesses A.. are de-
ij 1j

termined using Equation (B.1) (also see Equations (B.2) and (B.3) for examples

illustrating the use of Equation (B.1)) as follows:

A.. = Q h + Q h(+45 h) + (45o )Jj ij T300(00) (T300) ijGY70+45 0 o) 5 ijGY70(_45o)(4
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Now,

h(T300) = 53 plies x 0.00516 in./ply = 0.27348 in.

and

h(+4 5o) = h(-4 5') = 16 plies x 0.00692 in./ply = 0.11072 in.

Therefore,

A j QT300(00) (0.27348) + Qi (0.11072) + Q.i. o (0.11072)

and

66

All = [(20.457)(0.27348) + (ii.83005)(0.ii072) + (ii.83005)(0.1i072)]×i06

= 8.21423x106

Similarly,

A1 2 = 2.41828x10
6

A = 3.00881 106

A = 0.0

A26 = 0.0

and

A6 6 = 2.60483x10
6

C.2. ENGINEERING CONSTANTS FOR TOTAL LAMINATE

Inverse of Extensional Stiffness Matrix A Substituting values for A.. into

Equation (7) gives

A A1 1 (A A A2 -A (A A -A 16 +2 26 (6 A-A
1 22 A6 6 -A 2 6 ) 12 12 66 1 6 A2 6 ) +A16(A A2 -A6 A22

49.1453x10
18
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Then,

A11 =  (A2 2 A66-A 2)/A = 1.59475x10

A12 =  (A1 2 A66-A1 6 A2 6)/A = -1.28175x10
7

A2 -7A22 = (A11 A 6 6-A16 )/A = 4.35376x10

A16 = (A1 2 A 26 -A1 6 A2 2 )/A = 0

26 (A 11 A 26-A1 6 A12/A = 0

and
2 -7

A66 = (Al1 A 22-A 1 2 )/A = 3.83902xi0

Determination of Engineering Constants: Inserting the values of Ai. above into

Equations (9) and rounding off the numerical results gives

- 6E = 1/(Ah) = 12.67x06 psix 11 ) =  s

Ey = 1/(A2 2h) = 4.64xi06 psi

Gxy = 1/(A 66h) = 5.26x106 psi

V = -A 2/A = 0.804Vxy 1A2/AI1

Vyx = -A I2/A = 0.294

T1 =A IA =0
xyx 16 11

T =A IA =0
xy,y 26 22

T1 A, IA =0
x,xy =  6 66

and

ny,xy A 26/X66 0
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APPENDIX D

INPUT DATA FOR COMPUTER PROGRAM SQ5

The general content of each card (from Reference 7) in the SQ5 problem deck

is as follows:

CARD COLUMNS FORMAT VARIABLE REMARKS

1 Blank ..

12-66 A65 Title Any alphanumeric information de-
scribing the problem which will

be printed at the top of the
first page of the problem output.

0--Program operation continues
after computation of laminate
data.

1-5 Key 1= 1--Program terminates after com-
puting and writing out the ele-

ments of the constitutive

matrices and the average lami-
nate properties.

0--No point stress or thermal
analysis will be done.

1--A point stress analysis will
be made on input sets of Nx , Ny,

6-10 Key 2= and N xy. One card per load case

must be added to the problem
deck (see Card 6). This key

must be set to 1 if a thermal
analysis is to be performed.

0--No additional analysis to be
performed.

1--A point stress analysis will

be made of average stresses a

0 , T 0, and 0. 0 is the angle

at which the stresses are applied.

2 11-15 15 Key 3= This analysis is for in-plane
loads only.

2--An interaction diagram will be
computed for the input laminate.
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CARD COLUMNS FORMAT VARIABLE REMARKS

0--No thermal analysis will be
made.

1--Thermally induced in-plane
T T T

16-20 Key 4= stress Nx , Ny , N xy and moment

T T T
M, M, MT  resultants will be

computed for an input tempera-
ture change. If Key 4 = 1, Key
2 must be set equal to 1.

0--No interlaminar shear stress
analysis will be made.

21-25 Key 5= 1--An interlaminar shear stress

analysis will be made for input
values of Q and Qy.

26-30 MA Number of lamina (100 max.).

31-35 15 NOMAT Number of materials (100 max.).

36-40 NCL Number of loading cases. This
applies to sets of Nx, N Nx'y' xy

and Mx, My , M xy, temperature

changes, and Qx and Qy (10 max.).

0--Minor Poisson's ratio of each

material is calculated by the
program.

1-5 15 KEYNU= 1--Minor Poisson's ratio of each
material is input.

1-9 El(I) Modulus of elasticity of the
I-th material along the first
(or "I") lamina axis.

10-18 E2(I) Modulus of elasticity of the I-th
material along the second (or "2")
lamina axis which is orthogonal to

the "l" lamina axis.

19-27 UI) First or Major Poisson's ratio
of the I-th material.
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CARD COLUMNS FORMAT VARIABLE REMARKS

28-36 G(I) Shear modulus of elasticity of the
E-th material.

37-45 ALPHA i(I) Coefficient of thermal expansion
of the I-th material in the "l"
lamina direction.

4* 46-54 F9.0 ALPHA 2(1) Coefficient of thermal expansion

of the I-th material in the "2"
lamina direction.

55-63 ALPHA 6(1) Shearing coefficient of thermal
expansion of the I-th material.

5** 1-9 F9.0 U2(I) Second or minor Poisson's ratio

of the I-th material.

1-5 15 LAY Lamina number.

6-10 15 MATYPE(I) Material of I-th lamina.

6*** 11-20 F10.0 TH(I) Counterclockwise angle in degrees
from the laminate reference axes
x, y to the lamina natural axes
1, 2 of the I-th lamina.

21-30 FIO.0 AT(I) Thickness of the I-th lamina.

1-10 CALElCI) Compression limit strain allowable

for the I-th material in the "1"
lamina direction.

11-20 CALE2(I) Compression limit strain allowable

for the I-th material in the "2"
FIO.0 lamina direction.

21-30 CALE3(I) Negative limit shear strain allow-
able for the I-th material.

31-40 TALElCI) Tension limit strain allowable
for the I-th material in the "1"
lamina direction.

*There will be a Card 4 for each material.

**There will be a Card 5 for each material only if KEYNU = 1 on Card 3.

***There will be a Card 6 for each lamina.
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CARD COLUMNS FORMAT VARIABLE REMARKS

41-50 TALE2(I) Tension limit strain allowable for

the I-th material in the "2"
lamina direction.7*

51-60 TALE3(I) Positive limit shear strain allow-

able for the I-th material.

1-9 N(II) In-plane force resultant in the
x direction for load case I
(lb/in.).

10-18 N(I,2) In-plane force resultant in the
y direction for load case I

(lb/in.).

19-27 N(I,3) In-plane shear force resultant

for load case I (lb/in.).

8** 28-36 F9.0 M(Il) M moment resultant for loadx

case I (in.-lb/in.).

37-45 M(I,2) M moment resultant for load
y

case I (in.-lb/in.).

46-54 M(I,3) M moment resultant for loadxy

case I (in.-lb/in.).

55-63 T(I) Change in temperature for load
case I.

1-10 SIGl Average laminate stress a acting

in cx direction of an a, 3 system
at an angle PHI from the laminate
x, y axis system.

11-20 Average laminate stress a acting
in S direction.

*There will be a Card 7 for each material.

**There will be a Card 8 for each load case. Card 8 is omitted if (a) only

laminate properties are desired, (b) only an interaction diagram is desired, or

(c) only an interlaminar shear analysis is desired.
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CARD COLUMNS FORMAT VARIABLE REMARKS

9* 21-30 FIO.O SIG3 Average laminate shearing stress

IIG 
"

31-40 PHI Angle in degrees from the a,
system to the x, y system.

1-10 QX(l) X shear force resultant for load
case 1 (lb/in.).

11-20 QY(l) Y shear force resultant for load

case 1 (lb/in.).

21-30 QX(2) X shear force resultant for load
i0** FIO.0 case 2 (lb/in.).

31-40 QY(2) Y shear force resultant for load
case 2 (lb/in.).

41-50 QX(3) X shear force resultant for load
case 3 (lb/in.).

51-60 QY(3) Y shear force resultant for load
case 3 (lb/in.).

i

*Card 9 is input only if Key 3 1 and Key 1 = Key 2 = Key 4 = 0.

**Enough Card 10's must be included to cover all load cases if Key 5 = 1.
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APPENDIX E

REDUCED STIFFNESSES OF LAMINATES FOR FINITE-ELEMENT ANALYSES

It was discussed earlier in this report how the reduced stiffnesses Q.. for

laminates may be used in finite-element programs (such as NASTRAN) to represent the

two-dimensional anisotropic elastic behavior of an equivalent nonlaminated material.

This appendix outlines the steps for determining these Qij (referred to as Gij on

the MAT2 card of NASTRAN).

Consider the laminated plate element, shown on the left in the sketch below,

having unit length and width and thickness h. The laminate may have any number of

layers, layer thickness, and fiber orientation just so long as the laminate ends up

being symmetric about the midplane (so that coupling stiffnesses Bij between exten-

sion and bending are zero--see Table 2 earlier in text). The laminated plate ele-

ment is to be replaced by an equivalent (in the sense that it has the same exten-

sional and bending stiffnesses) nonlaminated plate.

D Jh Jh

Laminated Plate Equivalent Nonlaminated Plate

For the symmetric laminated plate element above, the in-plane forces are re-

lated to in-plane strains by

N x 111A12 16 ()
Nx AIA A Ax (E.1)

y 12 22 26 y

Nxy [A1 6 A26 A 66 Yxy,

71

=,a



and the moments are related to the out-of-plane curvatures by

Ms FD 11D 12D 1(k)

MyD12D 2 2 D 26  ky(E.2)

M xY LD I6 D 26 D66 k xY

Or, using condensed matrix notation,

{N} = [A]{} and {M} = [D]{k} (E.3)

Likewise, the force-strain and moment-curvature relations on the laminated plate may

be written as

{N*} = [A*]{E*} and {M*} = [D*]{k*} (E.4)

where [A ] and [D ] are the extensional and bending stiffnesses for the equivalent

:nonlaminated plate. Now, if for the same applied loads on the laminated and equiv-

alent nonlaminated plate, that is, for

{W} = {N*} and {MT = {M*I

the two plates have the same strain and curvature

{} = {C* I and {k} = {k

*. then it follows that the plates must also have the same extensional and bending

stiffnesses

[A] = [A ] and [D] = [D ] (E.5)

Next, using either Equations (3) or (B.1) (both are the same), the stiffnesses [A 1
and [D I may be shown to be given by
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[A adI- [Qmlh

and

[D] = [Qb)h 3/12 (E.6)

Therefore, substituting Equation (E.6) into Equation (E.5), we have

* 1
[%] = [A] 1 (E.7)

and

[D] 1

1Qb h 3/12

or

Qi". = A. .I/h (E.8)
(in) Ij

and

Qij = 12 D°. /h 3

'(b) x

Using Equation (E.8), the reduced stiffnesses Qij and QIj may be straight-

(m) (b)
forwardly computed once the A.. and D.. are found either by hand (see Appendixes A

13 13
through C) for laminates having a few layers or by computer using the program SQ5

for laminates of many layers (see Appendix D). When using NASTRAN, the stiffnessc-

in Equation (E.8) are input to NASTRAN as the variables G.. on the MAT 2 cards, as'a
previously indicated.
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APPENDIX F

PROCEDURE FOR DETERMINING TWO-DIMENSIONAL IN-PLANE LAMINA

STRESSES BY POST-PROCESSING FINITE-ELEMENT OUTPUT

The following procedure is used to determine in-plane lamina stresses by post-

processing the computer finite-element output.

1. Determine the equivalent material stress on the upper (u) and lower (1)

surface of the element from computer finite-element analysis output (use sign con-

vention shown in sketch on right):
y

(5 = (5 Ou Yl

++

y

t *(3

2. Decompose the surface stresses into membrane (m) and bending (b) components:

(5 - 5 -

ux x1

y T+- +

I
u xY

T T T

and

xX u ' 1

1 1

(5 (5 -- (

yYu 2 Yl

xy XY xyl

*Values from finite-element output.
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3. Compute equivalent membrane and bending strains:

(x 1[CI  C12 16 X

y C 12 C 22 C 26 ay

Yxy m LC16 C26 C66 Txy

* -1

where [Ci.] = [Q.I] (see Appendix E),
m m

and
(t) - 1 C212 C 1 G x
y C Cl2 26 y

Yxy b C1 6 C2 6 c 6 6 - b xy

where [CI] = [QI] (see Appendix E).
I b I b

4. Compute total strains in the i-th layer:

y I = xth layer

d. d i

y m xy b

5. Compute The stress in the i-th layer in direction of the x and y axes:

ax[QII Q1 2 Q1 6 1 x 

a y Q1 2 Q22 Q26 y

T xy Q1 6 Q2 6 Q6 6 i Yxy
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6. Compute the stress in the i-th layer in direction of "I" and "2" axes

(where "I" makes an angle 6 with the x axes):

cs2 0sn2 0 sios

2  = sin Cos28 -2sinecose Oy

~a22 22

TI2 L sinLcosO -sinecos6 (-cos2 +sin 6 TxY

Y Y2\1I xy

77
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